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ABSTRACT 

Micro RNA are small single stranded RNA that regulate the expression of various 

genes. MiRNA guide the mRNA disintegrating RISC complex to the complimentary 

sequence in the target mRNA. Each micro RNA has multiple targets and can play a 

different biological role depending on the population of targets at the particular stage of 

the cell or a physiological state. Several miRNA show elevated or decreased levels of 

expression in various cancers because of their role in tumor initiation and progression. 

MiRNA belonging to mir148/152 family are examples of such MicroRNA. This family 

includes miR148a, miR148b and miR152. MiR148a and miR152 are down-regulated in 

various cancers while there is no significant change in the expression of miR148b. Prior 

studies indicate a role for miR152 and mir148a in suppressing tumor growth in various 

cancers. However, the mechanism of action and targets remain to be identified.   

Interestingly, miR148b and miR152 are encoded within the first intron of COPZ1 

and COPZ2 genes respectively. This study started with the understanding of the role of 

miR152 in cancer progression. COPZ2 gene expression is lower in malignant tissues of 

different tumor types when compared to benign tumors suggesting a similar expression 

pattern for miR152.   We have identified several candidate targets for miR152 in the TGF-

β pathway including DNMT1, LTBP1, SERPINE1 and the Rho GEF -LARG. This data 

led to the hypothesis that miR152 expression correlates with tumor progression and 
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 that miR152 suppresses epithelial to mesenchymal transition (EMT) and EMT related 

events through regulation of specific EMT mediators and effectors. However, all the 

members belonging to this family have the same seed sequence that binds to the target 

genes, suggesting that they play similar roles and have common targets. 

In this thesis, I have verified LTBP1 and PAI1 as novel, common targets for the 

miR148/152 family. Additionally, reintroduction of these microRNA into prostate cancer 

cell lines can decrease the migratory capabilities and increase the adhesive characteristics. 

This biological role of these miRNA can be exploited in the form of replacement miRNA 

in cancer therapy. 
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CHAPTER 1 

INTRODUCTION 

 

Cancer is a complex disease that is characterized by uncontrolled cellular 

proliferation, unlimited replicative potential, resistance to apoptosis and invasive 

capabilities.[1, 2] It is the leading cause of death in the United States of America, next only 

to heart disease, claiming more than half a million lives each year [3]. Cancer is a multistep 

process in which cells acquire a series of mutations which cause uncontrolled cell growth 

resulting in the formation of a tumor[2]. Eventually, these cancerous tumors undergo 

metastasis, a process during which some cells break away from the tumor and invade other 

parts of the body[4]. The initiation of cancer is associated with many genetic and epigenetic 

alterations which accumulate over time and drive the advancement from normal cell to a 

malignant phenotype.[2, 5] This facilitates changes in the expression levels of the genes 

that are part of important regulatory pathways in place to prevent the transformation of a 

normal cell into a malignant phenotype. Gene expression can be altered by many 

mechanisms that cause transcriptional or translational regulation. Post transcriptional or 

translational repression by micro RNA is one such mechanism, which is being extensively 

studied due to its emerging role in cancer maintenance and progression. 

1.1 Epithelial to Mesenchymal Transition 

Cancers of the epithelial tissue like breast and prostate are the most common forms of 

cancer observed in the clinic. In majority of the cases, cancers of epithelial tissue are not 
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life threatening and surgical removal of the tissue in an early stage can often cure the 

cancer. When the cancer metastasizes, it leads to poor prognosis, often resulting in death, 

as it disrupts vital organs and tissues like liver, lungs, brain and bone marrow. Therefore, 

it is important to understand the progression of metastasis to prevent and treat invasive 

malignancies.  

 Epithelial to Mesenchymal Transition (EMT) is the process by which epithelial 

cells morph into mesenchymal cells due to loss of polarity and cell-cell adhesion, and gain 

migratory and invasive properties [6]. While EMT is an important program that is required 

for embryonic development, wound healing and tissue regeneration, it plays a more 

ominous role in cancer progression, where EMT is associated with the conversion of 

localized, early tumors to invasive malignancies [7, 8]. EMT is initiated by a number of 

biochemical changes in the polarized epithelial cells that are attached to the basement 

membrane via its basal surface[9]. This results in the alteration to mesenchymal phenotype 

with enhanced migratory capabilities, invasiveness, increased resistance to apoptosis, and 

elevated levels of ECM components like fibronectin [10]. Degradation of underlying 

basement membrane and the migration of a mesenchymal cell from the epithelial layer in 

which it originated marks the completion of EMT [10]. 

 Many molecular processes are involved in this process; activation of transcription 

factors, expression of specific cell-surface proteins, production of ECM-degrading 

enzymes, reorganization of cytoskeletal proteins, and changes in the expression of specific 

microRNAs [11]. While some transcription factors, cell surface proteins and enzymes have 

been extensive studied and used as biomarkers to assess the stage of EMT, new 
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components, like certain micro RNA, that can either hinder or facilitate the process of EMT 

are being discovered and studied every day. 

1.2 Micro RNA 

Micro RNA are short, single-stranded non-coding RNA, which are about 19-24 

nucleotides in length. The main known function of micro RNAs is the down-regulation of 

target gene expression by translational repression or degradation of mRNAs upon binding 

to the consensus sequence on the target mRNA [12, 13].  Every miRNA can potentially 

regulate the expression of numerous protein-coding genes and ~30% genes are regulated 

by microRNAs [14]. Even though more than a 1000 microRNAs are expressed in human 

cells, not all of them are equally important. High throughput screenings of diverse systems 

have identified certain miRNAs as principal regulators of major cell functions in various 

physiological (cell cycle, differentiation, development, and metabolism) [15-17] and 

pathophysiological (immune and neurodegenerative disorders, diabetes and cancer) [18, 

19] settings. 

1.2.1 Biogenesis 

Genes coding for the miRNA  are evolutionarily conserved and can be located in 

the introns or exons of protein coding genes (70%) or the intergenic regions (30%)[20, 21]. 

MiRNA biogenesis and maturation is compartmentalized between the nucleus and 

cytoplasm[22]. MiRNA genes are transcribed by RNA polymerase II to generate long 

primary transcripts called pri-miRNAs [23]. Intronic miRNAs or Mirtrons are derived from 

splicing of host gene’s mRNA or by cropping during transcription [24, 25]. Drosha, an 

RNase III–type endonuclease, processes the pri-miRNAs to hair-pin pre-miRNA, 

approximately 70 nucleotides in length [26]. The pre-miRNA hairpin is then exported from 
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the nucleus into the cytoplasm, where it is processed by another endoribonuclease, Dicer, 

into the mature double stranded, but unstable 19-25 nucleotide (miRNA) [27, 28]. 

Depending on the stability, one of the two strands in the duplex is incorporated into the 

RNA-induced silencing complex (RISC), a multiple-protein nuclease complex [29]. The 

incorporated strand is called the guide strand and the other strand is called the passenger 

strand [28]. 

1.2.2 Mechanism of Gene Regulation by miRNA 

The approximately 6 nucleotide long sequence 5’ end of the miRNA, called the 

seed sequence, has a complementary sequence on the mRNA[30]. Once incorporated into 

a RISC, the miRNA guides the entire RISC complex to the target mRNA by imperfect 

pairing, i.e., they are exactly not complementary[29]. It can then regulate the target genes 

by degradation of the mRNA through direct cleavage or by inhibiting protein synthesis by 

inhibition of translation initiation or elongation[31]. Putative targets of a miRNA can be 

computationally predicted by matching seed sequences of miRNAs to target mRNAs.  

1.2.3 MiRNA and cancer 

A number of miRNAs have been shown to be deregulated in cancer [15, 18, 32-35]. The 

deregulation of miRNAs can be a result of deregulation of upstream regulators of the 

miRNAs that has a direct result of changing the expression of their target proteins. As a 

result, important pathways that are in place to prevent cancer progression can be 

deregulated. An miRNA expression profile or signature can be attributed to certain 

malignancies and can also be used for diagnosis and to predict the outcome of the disease 

[36-38]. Two broad classes of genes, oncogenes and tumor-suppressor genes play an 
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important role in the induction and progression of cancer. MiRNA can also be grouped in 

these two categories, based on their targets and their expression profiles.  

1.3 MiR148/152 family 

MiR148/152 family comprises of three micro RNAs; miR148a, miR148b and 

miR152. All three micro RNA have the same seed sequence and have different bases in 

three positions; 9, 10 and 20. MiR148/152 family members have been studied individually, 

and in some cases miR148a and miR152 have been studied together and it has been shown 

that MiR148a and miR152 are down regulated in a number of cancers [39-45] and have 

also been known to play a role in immune response[46]. The most important targets that 

have been validated for miR148a and miR152 are DNA methylases, DNMT1 and 

DNMT3b. This has an important effect on global methylation that can silence non-target 

genes like E-cadherin (CDH1) and GSTP1 [40, 41, 44, 47, 48]. 

1.3.1 MiR148a 

 MiR-148a is the most comprehensively studied of the three miRNA belonging to 

this family. The gene coding for miR148a is intergeneic and is present on chromosome 

7[49]. It has been identified as a tumor suppressor miRNA due to its targets and the 

observation that it is downregulated in multiple cancers like prostate, breast colorectal and 

gastric cancers[42-45, 50, 51]. DNMT1, DNMT 3b, CDC25B, MSK1, Bcl-2, IGF-IR, 

IRS1, ERBB3, TGIF2, PXR, CAND1, p27, HLA-C, ACVR1, HLA-G, WNT10B, PTEN, 

and ROCK1 are some of the validated targets of miR148a, illustrating its role in various 

molecular mechanisms like cell growth and proliferation, migration, invasion, apoptosis, 

cell cycle progression, etc. [39, 42, 48-60]. Its function in normal tissue has been examined 

but not extensively. miR148a expression is lower in mesenchymal stem cells when 
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compared to the embryonic stem cells[54]. It is most abundant in the liver tissue[61] and it 

has been shown that miR-148a abrogates Met/Snail signaling in metastatic hepatocellular 

carcinoma by downregulating Met, thereby having a weakening effect on the EMT 

program[62]. 

1.3.2 MiR148b 

 MiR148 is an intronic miRNA with the gene being encoded within the first intron 

of COPZ1 gene on chromosome 12[49]. Is has been shown to be downregulated in some 

liver cancer cell lines, oral, pancreatic, colon and gastrointestinal cancers [63-67], while it 

has been shown to be unchanged or upregulated in breast and prostate cancers [68, 69]. It 

has been speculated that the presence of the miRNA within the intron of COPZ1 is 

responsible for its positive expression in some cancers despite having the same seed 

sequence as tumor suppressor miRNA (miR148 and miR152). CCKBR and CCK2R, which 

are involved in cell proliferation have been validated as targets in gastric and colorectal 

cancers respectively, and MCL1 is another probable target [49, 67, 70]. 

1.3.3 MiR152 

 MiR152 is also an intronic miRNA and the gene is encoded within the first intron 

on COPZ2 gene on chromosome 17. COPZ2 gene encodes for a coatomer protein complex 

subunit ζ2 and is not a tumor suppressor, but MiR152 has been shown to be downregulated 

along with its host gene, COPZ2, in breast and prostate cancers[69]. It has been perceived 

that COPZ2 is downregulated due to the presence of gene for miR152 in its intron. MiR152 

is also downregulated in ovarian, gastric, colorectal and endometrial cancers [40, 47, 71]. 

CSF1, E2F3, MET, Rictor and MLH1 have been validated as targets in at least one cancer 
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type. By downregulating these targets, miR152 plays an important role in cell growth, 

motility and adhesion [47]. 

1.4 Previous Studies and Objective of the Research 

 The study of this family of miRNA did not start with micro RNA screen but with a 

genome wide genetic suppressor element (GSE) screen performed by Shtutman et.al. , to 

identify the genes on which cancer cells are dependent on for their survival. This screen 

identified that many cancer cell lines were dependent on COPZ1 for their survival [69]. 

COPZ1 gene encodes for the ζ subunit of the COP1 coatomer complex [72]. An isoform 

of this subunit is encoded by COPZ2 gene. Further analysis determined that this 

dependence on COPZ1 by cancer cells is due the downregulation of COPZ2 gene in various 

cancer cell lines. In normal cells, the loss of COPZ1 is not detrimental as COPZ2 gene 

compensates for the loss and ensures continued COP1 function. However, in various cancer 

cell lines, COPZ2 is downregulated and ζ2 isoform is not produced to compensate for the 

loss, causing cancer cells to be dependent on ζ1 for continued COPI function. This 

determined that this dependence on COPZ1 is not a classic ‘oncogene addiction’ 

phenomenon.  Instead, the authors called it ‘isoform addiction’. A high level of COPZ2 

expression is not detrimental to tumor growth indicating that COPZ2 is not a tumor 

suppressor[69]. Both COPZ1 and COPZ2 genes encode precursors for miR148b and 

miR152 within their introns. As discussed earlier, miR152 has been shown to have tumor 

suppressor activity, indicating the most plausible reason for COPZ2 downregulation. 

  As shown in Figure 1.1, COPZ2 expression is downregulated in breast (MDAMB-

231), fibrosarcoma (HT1080) and prostate (PC3) cancer cell lines when compared to a 
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normal fibroblast cell line (BJ-HTERT). Biogenesis of intronic miRNA indicate that 

miRNA transcript is derived from the host transcript [24, 25]. MiRNA micro array 

expression profiling has revealed that the expression of an miRNA correlates with the 

expression of its host gene[21]. In concert with that, Shtutman et.al. have shown that 

miR152 expression correlates with the expression of COPZ2 (Figure 1.2). Analysis of 

microarray data from GEO database revealed that COPZ2 was strongly downregulated in 

metastatic prostate cancer and melanoma when compared to their respective benign tumors  

[69]. This indicates a similar expression pattern for miR152.  

Members of the miR148/152 family have the same seed sequence, suggesting that 

they play a similar biological role in cancer progression. Decreased expression on miR152 

in advanced stage tumors and with a number of predicted targets being involved in EMT 

indicates a possible role for this miRNA family in EMT. We have used prostate cancer 

model for the experiments here with a hope of extending these results to other carcinoma 

types in the future. 

1.4.1 Hypothesis and Specific Aims 

Hypothesis: Members of miR148/152 family inhibit cancer progression and are hence 

downregulated in cancer. 

Specific Aim 1: To discover novel targets of miR148/152 family with a possible role in 

cancer progression. (Chapter 2) 

Specific Aim 2:  To analyze the possible biological role of Mir148/152 family in cancer 

progression. (Chapter 3) 
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Figure 1.1: Downregulation of expression of COPZ2 in various cancer cell lines compared 

to the expression of COPZ1. qRT-PCR analysis of expression of COPZ1 and COPZ2 genes 

in various tumor cell lines and BJ-hTERT fibroblasts. Expression is normalized using 

GAPDH and is presented relative to expression in BJ-hTERT cell line. 

 

 

 

 

Figure 1.2: Expression of COPZ2, and miR-152 in human tumor cell lines. Expression is 

presented relative to BJhTERT. (Adapted from Shtutman et.al., 2010 [69])
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CHAPTER 2 

NOVEL TARGETS OF MIRNA 148/152 FAMILY 

 

2.1 INTRODUCTION 

 A single miRNA has multiple targets which regulate different regulatory pathways 

depending on the mRNA population of the cell at a given time[15]. A number of targets 

have been investigated and validated for miR148/152 family in different cancers [12-22]. 

Due to the predicted involvement of this family in the regulation of EMT, we have decided 

to look for novel targets that are involved in EMT. This led to a list of genes that are not 

only important for EMT but also for other cellular functions; ARHGEF12 or LARG, 

LTBP1 and PAI1 (SERPINE1) [73-94]. 

LTBP1 gene codes for latent transforming growth factor - beta binding protein 1. 

It is required for αvβ6-mediated TGF-β activation, one of the three activation mechanisms 

of TGFb [73-76]. LTBP1 has been shown to play a role in cancer progression mostly via 

the stromal cells or extracellular matrix [77, 78]. LTBP1, being a modulator of TGFb levels 

and activity, plays a role in TGFb mediated EMT [79, 80]. 

 SERPINE1 gene encodes for Plasminogen activator inhibitor-1 also known 

as endothelial plasminogen activator inhibitor or serpin E1 protein. PAI-1 is a serine 

protease inhibitor which principally inhibits tissue-type plasminogen activator (tPA) and 

urokinase-type plasminogen activator (uPA), which are key enzymes for the initiation of 
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fibrinolysis [81]. PAI-1 not only regulates the lysis of blood clots, but also a wide variety 

of biological reactions occurring in extracellular matrices such as tumor metastasis, 

neovascularization, inflammation, and cell migration[82]. TGFb induced EMT was 

inhibited upon the introduction of PAI1-siRNA indicating a role for PAI1 in the 

progression of EMT[83]. Decrease in PAI1 levels correlates with reduced epithelial cell 

migration and tumor progression [84-86].    

  LARG gene codes for Rho guanine nucleotide exchange factor 12 protein. 

Like other Rho GTPase proteins, it has functions in a number of cellular processes. In 

contrary to other targets of the miR148a/152 family, LARG has been shown to be a tumor 

suppressor gene in breast and colorectal cancers[87]. 

 Rictor codes for Rapamycin-insensitive companion of mTOR protein. RICTOR is 

a component of the mTOR-containing complex, mTORC2, which directly regulates the 

phosphorylation of Akt, which mediates a variety of biological responses including cell 

growth, proliferation and survival [88, 89]. RICTOR has been shown to be upregulated in 

various cancers [90-92]. Increased RICTOR expression has been shown to be associated 

with EMT [93, 94]. 

2.2. MATERIALS AND METHODS  

2.2.1 Cell lines  

Two different prostate cancer cell lines were used in this study, DU145 and PC3. Four 

stable cell lines each of PC3 and DU145, overexpressing the pre- MiRNAs 148a, 148b, 

152 and a cell line with empty vector control were established using lentiviral infection in 

Dr. Shtutman’s lab. The plasmids carrying the respective microRNA also have an insert 
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for Green Fluorescent Protein and the cells are sorted using Fluorescence-activated Cell 

Sorting to obtain a pure population of cells overexpressing the MicroRNA. The expression 

of microRNA in the cell lines is then validated using qPCR. These stable cell lines will be 

used for all subsequent experiments to study the role of the MicroRNA in cancer. All the 

cells were grown in DMEM/High glucose medium (HyClone™) with 10% FBS serum 

(Hyclone™), 1% penicillin (100 units/ml), 1% streptomycin (292 μg/ml) and glutamine (2 

mM). A standard, sterile cell culture technique was used to culture the cells. Typically, 

cultures grown to 70-80% confluency were used for the experiments. Cell lines were 

maintained in culture for about two months before starting a fresh culture.  

The normal foreskin fibroblast line, BJ-hTERT immortalized by re-expression of 

the hTERT protein, along with transformed lines, BJ-ELB and BJ-ELR, which overexpress 

RAS and myc, are also used in some studies. BJ fibroblasts were cultures in DMEM/High 

glucose medium with 10% FBS, 2mM L-Glutamine, 10mM sodium pyruvate and 20% 

medium 199. 

2.2.2. Identification of targets 

An initial list of genes involved in EMT was obtained from PCR microarray by 

Sabiosciences TM. The genes were then individually checked for miR148a, miR148b and 

miR152 binding sites using TargetScanHumanTM. 

2.2.3. Cell lysis and RNA preparation 

Total RNA was extracted using Trizol purification method. For a 100 mm dish, 

media was aspirated and 1 ml of Trizol reagent was used scrape the cells and placed in an 

Eppendorf tube. 200 µl of chloroform was added mixed and incubated for 2–3 minutes and 
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centrifuged at 12000 g for 15 min at 4°C. The aqueous layer was transferred to a fresh tube, 

500 μl of isopropanol was added and incubated for 10 minutes at room temperature. The 

samples were centrifuged at 12000 g for 10min at 4°C. Supernatant was discarded and the 

pellet was then washed with 1 ml 75% EtOH, spun at 7500 g for 5 min. The supernatant is 

removed and the pellet is dried at room temperature for 10-15 minutes. The pellet is then 

resuspended in 20 – 50 μl nuclease free water and the RNA quantity and quality was 

determined at 260/280 nm using a spectrophotometer (Nanodrop™ Technologies).  

2.2.4. Modification and amplification of mature miRNA’s 

The RNA obtained from Trizol purification was used. This method was only used 

for evaluating the expression of miRNA even though the nascent mRNA is also modified 

during this procedure. Mature miRNAs were first modified by the addition of a polyA 

using E-PAP enzyme from NEB Inc. 1 µg of total RNA is mixed with 2 μl E-PAP buffer, 

2 μl ATP and 3.5 μl E-PAP enzyme. The final volume is made up to 20 μl using nuclease 

free water and incubated at 37ºC for one hour.  

2.2.5. Reverse transcription 

Two different reverse transcription methods were used, one for miRNA and the 

other for mRNA. For miRNA, reverse transcription was performed using Bioline Tertro 

cDNA synthesis kit and 20 μl of E-PAP treated RNA. For ac sample, 1 μl universal RT 

primer and 1 μl dNTP mix was added and incubated at 65ºC for 10 minutes and on ice for 

2 minutes. Then, 4 μl 5X RT buffer, 1 μl RNAse inhibitor and 1 μl reverse transcriptase 

were added and incubated at 45ºC for 60 minutes and at 70ºC for 15 minutes. The final 

product is the diluted 1:10 and used for qPCR. 
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 Maxima First Strand cDNA Synthesis Kits for RT-qPCR was used for reverse 

transcription of mRNA. For each sample, 2 μl of the 5X reaction mix and 1 μl Maxima™ 

enzyme mix is added and made up to 20 μl using nuclease free water. The samples are then 

placed in a thermal cycler to be incubated at 25ºC for 10 minutes, 50ºC for 30 minutes and 

85ºC for 5 minutes. The reaction is then diluted 1:10 and used for RT-PCR or qRT-PCR 

or stored at -20ºC for short term storage. 

2.2.6. RT-PCR:  

Primers are designed using NCBI primer blast and ordered from IDT. They are 

diluted to 100 μM and stored at -20ºC. Primer mixes containing both forward and reverse 

primers are made with the concentration of each primer being 10 μM. The cDNA generated 

from reverse transcription is used for PCR. The experiment in performed in duplicates 

using Promega™ PCR master mix. For each sample, 12.5 μl master mix, 5 μl cDNA, 2.5 

μl nuclease free water and 5 μl primer mix is added. The samples are then subjected to 

initial denaturation (95ºC for 2 minutes) and 25 cycles of denaturation (95ºC for 45 

seconds), annealing (55ºC for 45 seconds) and extension(75ºC for 20 seconds) followed by 

final extension (75ºC for 5 minutes). The samples are then run on a 2% agarose gel and 

bands are visualized using Enduro™ Gel Documentation System. ImageJ™ is used to 

quantify the bands. Expression levels are normalized to GAPDH expression. Primers and 

their sequences are listed in Table 2.1. 

2.2.7 qRT-PCR:  

The reactions are performed in quadruplicates in a 384 well plate using SYBR 

Green PCR master mix. For each reaction, 0.5 μl of primer mix, 5 μl SYBR Green and 4.5 
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μl cDNA was added. Applied Biosystems 7900 HT Fast Real Time PCR system was used 

for quantification and amplification. Expression levels are normalized to house-keeping 

genes, GAPDH or RPL13A. 

2.2.8 Statistical Analysis: 

 Differences between the groups was compared using two-tailed paired student's t 

test. Family-wise error rate was corrected using Bonferroni correction. P-value less than 

0.05 was considered statistically significant. 

2.3. RESULTS 

2.3.1 Putative targets of miRNA148/152 family 

A list of putative targets was obtained with the help of Sabioscience™s’ database 

and Targetscan™. Concurrent with the hypothesis that miR148/152 family plays a role in 

EMT, various genes involved in EMT were blasted for probable binding sites of miR148a, 

miR148b and miR152.  Targetscan’s ability for target prediction was evaluated by first 

looking for the binding sites of the validated target of this family, DNMT1 and RICTOR. 

Owing to the similarity in their sequences, it was expected that possible targets will show 

binding sequences to more than one miRNA belonging to this family. Consistently, it has 

been observed that the targets had binding sequences for all three miRNA belonging to 

miR148/152 family.  Three novel targets have been identified using this protocol; LARG, 

LTBP1 and PAI-1 (SERPINE1) (Figure 2.1). Though RICTOR was only validated as a 

target of miR152, TargetScan™ predicted it as a putative target for the other two miRNA 

in this family. 
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2.3.2 Validation of putative targets 

Potential targets were validated using RT-PCR and qRT-PCR in the eight stable 

cell lines (Figures 2.2); DU145 and PC3 cell lines each overexpressing one of the miRNAs 

of miR148/152 family or the control miRNA. DNMT1, being a validated target, was used 

as a positive control (Figure 2.3-2.4). Accordingly, DNMT1 was downregulated in all the 

cell lines, albeit to a different level. Expression of DNMT1 was also evaluated in a series 

of BJ cell lines; BJhTERT, a normal immortalized cell line, BJ-ELB, partially transformed 

cell line and BJ-ELR, a fully transformed cell line. These cell lines have decreasing COPZ2 

levels in the order of increasing tumorigenecity, suggesting decreasing levels of miR152. 

Figure 2.4 shows the increase in the expression of DNMT1 in the same order. RICTOR, 

which is a validated target of miR152, was downregulated in both PC3 and DU145 cell 

lines overexpressing miR152. Interestingly, RICTOR was also downregulated with the 

overexpression of the other two miRNAs (Figure 2.5). Two of the predicted targets, LTBP1 

and LARG, are also downregulated in all the cell lines (Figures 2.6, 2.7). PAI-1, another 

potential target was downregulated in all the cell lines, except the PC3 cell line 

overexpressing miR148b (Figure 2.8).  

2.4 Discussion  

DNMT1, a DNA methylase, is an important validated target of miR148a and miR152. It 

has also been shown that there is inverse correlation between the expression of DNMT1 

and miR148a/miR152 (Figure2.4) and that DNMT1 hypermethylates and thereby silences 

miR148a and miR152 [95]. miR148b has been shown to be silenced as a result of 
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hypermethylation of the promoter region in pancreatic cancer [45] and a number of 

metastatic cancers.The reintroduction of miR148a into the cancer cells with epigenetic 

inactivation inhibited their motility, reduced tumor growth, and inhibited metastasis 

formation in xenograft models [96]. Hypermethylation of the CpG islands in the promoter 

region of miR152 by DNMT1 has been shown to be responsible for the silencing of 

miR152 in endometrial cancer [47] and it has been associated with poor clinical outcome 

in acute lymphoblastic leukemia (AML) [97]. Increased DNA methylation of miR148a and 

miR152 promoter regions has been found in colorectal, gastric and endometrial carcinomas 

when compared to the normal tissues [98].  

Any alteration in the methylation pattern has been shown to accompany the process 

of tumorigenesis be it hypomethylation or hypermethylation [96, 99]. Gene expression 

profiling of breast cancer model system suggested that there was DNA hypermethylation 

silenced a number of genes involved in cell adhesion and tight junction formation; CDH1 

(E-cadherin), CGN, and CLDN4, in basal breast cancer cells that have undergone EMT. 

Furthermore, it has been suggested that TGFβ-Smad2 signaling and DNMT1 form a 

positive regulatory loop to maintain epigenetic silencing during epithelial to mesenchymal 

transition [100]. Comparison of the gene expression profiles between invasive 

mesenchymal-like MIII cells and the noninvasive epithelial MII cells revealed relatively 

high expression levels of the downstream targets of TGFβ signaling, such as MMP2, 

SERPINE1, and TGFβI, in MIII cells. Furthermore, expression of TGFβ1 and the TGFβ-

activating proteins LTBP1, LTBP2, LTBP3, LTBP4, and THBS1 was also dramatically 

increased in MIII compared with MII cells [100].  
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Transforming growth factor-beta (TGF-beta) is a multifunctional regulatory 

cytokine that controls many aspects of cellular function. One of the biological effects of 

TGF-beta is the inhibition of proliferation of most normal epithelial cells and this suggests 

a tumor suppressor role for TGF-beta. During the early phase of epithelial tumorigenesis, 

TGF-beta inhibits primary tumor development and growth by inducing cell cycle arrest 

and apoptosis via SMAD signaling.  In later stages of tumor progression when tumor cells 

become resistant to growth inhibition by TGF-beta, due to inactivation of the TGF-beta 

signaling pathway or aberrant regulation of the cell cycle, the role of TGF-beta becomes 

the one of tumor promotion. TGFβ overexpression along with increased nuclear phospho-

Smad2 has been observed in advanced tumors [101], and Smad2 has been shown to be 

involved in the EMT process [102]. To understand if miR152 has any influence on TGFβ 

signaling, we performed a preliminary experiment where we tested the effect of miR152 

overexpression on p-samd2/3 levels upon TGFβ treatment in DU145 cells. DU145 cells 

overexpressing miR152 showed decreased induction of p-smad2/3 signaling (Figure A.1 

in appendix A). Further experiments with the miR148b and miR148a need to be done to 

assess the effect of miR148/152 family on TGFβ signaling.  

LTBP1 expression negatively correlates with the expression of miR148/152 family 

(Figure 2.5). PAI-1 expression is significantly decreased in all tested cell lines except 

miR148b overexpressing PC3 cell lines (Figure 2.6), where surprisingly, it is elevated. 

Also, PC3 cell lines have endogenous miR148b and overexpression might not have 

changed the expression pattern.  LTBP1 regulates the bioavailability of TGFβ and 

downregulation could result in decreased TGFβ activity. PAI-I and RICTOR, downstream 

targets of TGFβ signaling, could have decreased levels of expression as a result. RICTOR 
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has been shown to be induced by TGFβ during TGFβ mediated EMT, upon which it pairs 

with ILK, a key intracellular mediator of EMT [93].  

Western blots for potential targets can indicate the effect of the miRNA148a/152 

family on the protein levels of the potential targets. No conclusion can be made about the 

targets until a luciferase assay is performed where the potential miRNA binding region is 

deleted from the promoter and effect on expression is assayed. DNMT1, LTBP1, PAI-1 

and RICTOR play a role in epithelial to mesenchymal transition. At least three of these 

targets are associated with TGFβ, which is an important driver of EMT. This suggests a 

role for miR148/152 family in EMT suppression.
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Table 2.1: Primer sequences for RT-PCR and qRT-PCR of the indicated genes 

Gene Sense Antisense 

GAPDH CCCCGGTTTCTATAAATTGAGCC ACCAGAGTTAAAAGCAGCCC 

RPL13a AGATGGCGGAGGTGCAG GGCCCAGCAGTACCTGTTTA 

Universal RT  AACGAGACGACGACAGACTTT   

GAPDH  CCATGTAGACCCCTTGAAGA 

miR148a   GTGCACTACAGAACTTT 

miR148b   TCAGTGCATCACAGAACTTT 

miR152   TCAGTGCATGACAGAACTTT 

DNMT1 TGTCCCAAGAAGAGCAACGG  AGAGCAGGTTGATGTCTGCG 

RICTOR CGCTCTCTGAAGAACCTCCG TTGATACTCCCTGCAATCTGGC 

LTBP1 AACAAGGCAGGCAAGTTGTG TCTGACATGGCGGAACACAG 

LARG ACACAGTCTACTATCACCGACA TGCAATGCGCTCAACTTTCTG 

PAI-1 
AGAGCGCTGTCAAGAAGACC ACGTAGGATGGGGGATGGTG 

 

 

Table 2.2 Summary of targets 
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Figures 

a)  

Arhgef12(LARG): Binding site – 1153-1160 

5' ...UUUGACUCUAAUUUUUGCACUGA... 

                         |  |  |                    |  |  |  |  |  |  |  

3'    GGUUCAAGACAGU-----ACGUGACU  

 

b) 

LTBP1: Binding site: 34-40 
5'    ... UAAGCCCAUAUACUCUGCACUGU... 

                                                      |  |  |  |  |  |  |    

3'             GGUUCAAGACAGUACGUGACU  

 

 

c)  

 

SERPINE1: Binding site – 1657-1663 
5' ...UUUCUUUUUUGAUUUUGCACUGG... 

                                                   |  |  |  |  |  |  |  

3'          GGUUCAAGACAGUACGUGACU  

 

d) 

 

RICTOR: Binding sites – 269-275, 1631-1637 
5'    ...GUAUGCAAGAGCCAAGCACUGAA... 

                                                      |  |  |  |  |  |  |  

3'          GGUUCAAGACAGUACGUGACU  

5' ...UGAAUUGUUCUUAUGUGCACUGU... 

                         |  |  |  |  |              |  |  |  |  |  |  |  

3'          GGUUCAAGACAGUACGUGACU  

 

Figure 2.1 miR148/152 binding sites of putative targets. An initial list of genes involved in 

EMT was obtained from PCR microarray by Sabiosciences TM. The genes were then 

individually checked for miRNA 152 binding sites using TargetScanHumanTM. 
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a) 

 

b) 

 

Figure2.2 Expression of miR148a, miR148b and miR152 in a) PC3 and b) DU145 stable 

cell lines overexpressing individual members of miR148/152 family. qPCR data is 

normalized to RNU6 and represented as mean of expression and ± SD. 
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a) 

 

b)          

 

 

Figure 2.3. Mir148/152 family downregulates the expression of DNMT1 in PC3 cell lines. 

Expression of DNMT1 in stable cell lines is verified by a) qRT-PCR and b) RT-PCR. 

RPL13A and GAPDH were used for normalization of qPCR and PCR data respectively. * 

indicates significant downregulation (P<0.05) of DNMT1 in miRNA overexpressing cell 

lines when compared to the control cell line. 
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Figure 2.4 DNMT1 expression inversely correlates with COPZ2 expression. The qPCR 

expression data from transformed cell lines, BJ-ELB and BJ-ELR is shown relative to 

normal fibroblast cell line, BJhTERT; mean and ± SD is represented here.
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a) 

 

b) 

 

Figure 2.5 MiR152 downregulated the expression of RICTOR. Expression of RICTOR in 

stable cell lines is verified by a) qRT-PCR and b) RT-PCR. RPL13A and GAPDH were 

used for normalization of qPCR and PCR data respectively. * indicates significant 

downregulation (P<0.05) of RICTOR in miRNA overexpressing cell lines when compared 

to the control cell line. 

 

 

 

 

0.00E+00

2.00E-07

4.00E-07

6.00E-07

8.00E-07

MiR1 MiR148a MiR148b MiR152

E
x

p
re

ss
io

n

MiRNA

RICTOR

PC3 DU145

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

al
iz

ed
 v

al
u
e

Cell Line

 * 
  * 



www.manaraa.com

 

26 

 

 

a)  

  

b)  

  

 

Figure 2.6 Mir148/152 family downregulated the expression of LTBP1 in PC3 cell lines. 

Expression of LTBP1 in stable cell lines is verified by a) qRT-PCR and b) RT-PCR. 

RPL13A and GAPDH were used for normalization of qPCR and PCR data respectively. * 

indicates significant downregulation (P<0.05) of LTBP1 in miRNA overexpressing cell 

lines when compared to the control cell line. 
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Figure 2.7 Mir148/52 family downregulated the expression of LARG in PC3 cell lines. 

Expression of LARG in stable cell lines is verified by qRT-PCR. RPL13A was used for 

normalization of qPCR data. * indicates significant downregulation (P<0.05) of LARG in 

miRNA overexpressing cell lines when compared to the control cell line. 

 

 

 

Figure 2.8 Mir148a and miR152 downregulate the expression of PAI1. There is increased 

expression in PC3_miR148b cell lines. Expression of PAI1 in stable cell lines is verified 

by qRT-PCR. RPL13A was used for normalization of qPCR data. * indicates significant 

downregulation (P<0.05) of PAI1 in miRNA overexpressing cell lines when compared to 

the control cell line. 
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CHAPTER 3 

ROLE OF MIRNA 148/152 FAMILY ON EMT 

 

2.1 INTRODUCTION 

 Metastasis is associated with poor prognosis and recurrence of malignancy. 

Epithelial to mesenchymal transition has been shown to play an important role in 

metastasis[103]. When undergoing the process of EMT, the epithelial cells lose their 

characteristic differentiated properties like cell–cell adhesion, planar and apical–basal 

polarity, and lack of motility, and acquire mesenchymal features, including motility, 

invasiveness and an increased resistance to apoptosis[11, 104]. The process of EMT is 

associated with changes in the mRNA and protein levels of many genes that are associated 

with morphological changes. For example, there is decreased expression of E - cadherin, 

an epithelial cell-cell adhesion molecule and increased expression on N - cadherin, which 

plays a role in adhesion to endothelial cells[11, 105]. A number of transcription factors 

regulate the expression of such genes.  

 To evaluate the role of miRNA 148/152 family in EMT, we studied the migratory 

and adhesive capabilities of the cell and also the expression levels of important 

transcription factors involved in EMT – SNAI1, SNAI2, TWIST1 and ZEB. We have also 

looked at E-cadherin expression levels to investigate one of the morphological changes 

accompanying EMT. E-Cadherin is downregulated by all the transcriptional factors 

mentioned above
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 SNAI1 (SNAIL) and SNAI2 (SLUG) belong to the Snail family of zinc-finger 

transcription factors[106]. The amino terminus contains SNAG (Snail/Gfi) domain which 

causes transcriptional repression. The zinc fingers mediate binding to the DNA promoters 

containing the E-box sequence (CAGGTG) and facilitating transcriptional repression or 

activation[107]. Apart from E-cadherin, SNAI1 also down-regulates the expression of 

other epithelial molecules, like Claudins, Occludins and Muc1 and induces the expression 

of genes associated with a mesenchymal and invasive phenotype, such as fibronectin and 

MMP9[107]. 

 TWIST-1 is a highly conserved transcription factor that belongs to the family of 

basic helix–loop–helix (bHLH) proteins[108]. Twist-1 also binds to the DNA promoters 

containing E-box domain and is involved in the regulation of genes involved in cell 

proliferation and migration, like, Tbx20, Sema3C, Gadd45a, and Rab39b[109]. ZEB1 is a 

member of the zinc-finger E-box-binding homeobox factor (ZEB) family and binds to the 

same consensus sequence as the other three transcription factors. Apart from E-cadherin, 

ZEB1 is also involved in the repression of other epithelial components like Crumbs 3 and 

PATJ (Pals-1 associated tight junction protein)[95].  

2.2. MATERIALS AND METHODS 

2.2.1 Cell Lines  

 Cell lines described in Chapter 2 were used. 
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2.2.2 PCR/qPCR 

 Methods described in the materials and methods section of Chapter 2 were used for 

RNA purification, reverse transcription, PCR and qPCR. 

2.2.3 Wound Healing Assay 

 Control and test cell lines were grown to >90% confluency in duplicates in a 12 

well dish. A scratch was made using a 20 µl pipette tip. A line was drawn to mark the area 

for photographs. Olympus IX81 microscope was used to take phase contrast photographs 

at 10x at regular intervals.  

2.2.4 Trans-well migration Assay 

 Corning 24 well plates with trans-wells are used for this experiment. The trans-

wells are coated with of one of the three ECM components; collagen, fibronectin and 

laminin diluted in serum-free media. This is done by incubating the plates with 10µ mg/ml 

ECM component on the either side of the well for 2 hours at 37ºC. The wells are then 

washed with 1X PBS and stored at 4ºC or used for experiment immediately. Upon 

trypsinization, cells are washed with serum-free media and counted. Depending on the 

experiment, 20,000 or 40,000 cells are plated onto the upper chamber in 100 µl of serum 

free media. Media with 10% FBS is placed in the lower chamber to act as a chemo-

attractant. 100pm TGFβ was added to the wells when required to assess its influence on 

the migration. The plates were incubated at 37ºC overnight. One of the two following 

methods was used to quantify the number of migrated cells; 1. The migrated cells are fixed 

in methanol and stained with eosin Y and methylene blue.  The filters are mounted onto a 

slide, photographed and cells are counted using Cell counter plugin in Image J software. 2. 
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Migrated cells are fixed onto the filter using 4% paraformaldehyde and stained with 

2mg/ml crystal violet. Crystal violet was solubilized in 2% SDS and the intensity was read 

at 595nm using Synergy™ microplate reader. A filter which was subjected to a similar 

treatment but with no cells were added was used as a blank. 

2.2.5 Adhesion Assay 

 Adhesion assay is performed in 96 well plates in triplicates. Wells are coated with 

10 µg/ml collagen diluted in serum-free media for one hour and blocked with 5% Bovine 

Serum Albumin) BSA in PBS for 45 minutes. 5% BSA in PBS was used as control to 

account for the background adhesion. Cells are detached from the plate using 0.5M EDTA 

and washed in serum free media and 40,000 cells in 50 µl serum free media are plated onto 

the collagen coated and BSA blocked wells. This assay was performed for three time 

points; 15 minute, 30 minute and 60 minute. After the required amount of time, media is 

removed and cells are fixed with 4% paraformaldehyde, stained with crystal violet and 

washed. Crystal violet was solubilized in 2% SDS and the intensity was read at 595nm 

using Synergy microplate reader. Two blanks, one each for coated and uncoated wells were 

used. 

2.3 RESULTS 

2.3.1 Effect of miR148/152 family on migration 

 EMT is characterized by increased migratory capabilities of the transformed cells. 

In vitro migration assays were performed on DU145 and PC3 cells overexpressing 

individual members of miR148/152 family. Since this study was first started to understand 

the role of miR152 in tumor progression, initial assays were performed only using DU145 



www.manaraa.com

 

32 

cells overexpressing miR152. Scratch assay performed using DU145_miR152 cells did not 

show any significant difference in the rate of wound closure (Figure 3.1). Single cell 

migration through ECM component, collagen showed significant decrease in migration, 

while migration in the absence of an ECM component or through fibronectin and laminin 

did not show any remarkable difference (Figure 3.2). All three miRNA caused decreased 

migration in DU145 cell lines while in PC3 cell lines, miR148a showed little change in the 

migration rate (Figure 3.3). 

 Results from chapter 1 led to a theory that miR148/152 family plays a role in the 

suppression of TGFβ induced EMT. To this end, we have performed preliminary studies 

where trans-well migration was accompanied by TGFβ treatment of the cells. External 

compensation of TGFβ caused increase in the migration rate of all the cell lines and the 

percentage of increase was in lieu with the increase in the control cell lines (Figure 3.3). 

2.3.2 Effect of miR148/152 family on adhesion 

 During EMT, cells lose their adhesive properties to detach from the basement 

membrane and surrounding cells. To verify the effect of miR148/152 family on adhesive 

properties of the cells, adhesion assay using collagen coated wells was performed in the 

DU145 stable cell lines. All three miRNA resulted in increased adhesion of the DU145 

cells (Figure 3.4). Further studies need to be done with varying concentrations of collagen, 

and also in the presence of other ECM components. All the experiments need to be repeated 

using PC3 cell lines before arriving at a conclusion.  
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2.3.3 Effect of miR148/152 family on the expression of EMT related genes 

 The expression of various transcription factors that play an important role in 

induction and progression of EMT and E-Cadherin, cell-cell adhesion molecule, was 

studied using qRT-PCR. None of these genes is consistently up or downregulated in both 

PC3 and DU145 cell lines. ZEB1 was downregulated in PC3 cell lines (Figure 3.6) while 

SLUG was downregulated in DU145 cell lines (Figure 3.7). E-cadherin being the target of 

all these transcription factors, is expected to be downregulated in these cell lines. 

Surprisingly, E-cadherin is downregulated in DU145 cell lines and upregulated in PC3 cell 

lines. However, western blot for the protein levels of E-cadherin revealed no significant 

difference in the protein levels. Since, mRNA expression levels of these genes do not give 

a clear indication of their expression levels, further analysis of their protein levels needs to 

be performed to make any tangible conclusions.  

2.4 DISCUSSION 

 Cell proliferation, migration, invasion and decreased adhesion are the common 

characteristics of metastatic cells. Two types of migration assays are performed here. 

Scratch assay represents collective cell migration that typically occurs in the tissues while, 

trans-well migration assay characterizes single cell migration, and to an extent, invasion. 

However, the results of both these assays can be influenced by cell proliferation in addition 

to migration. Previously, MiR152 and miR148a has been shown to have an impact on cell 

proliferation [43, 69]. Migration through collagen coated filter for a shorter time point of 

6 hours did not show a significant difference in the migration rate of DU145 cells 

overexpressing miR152. The migration assays, when performed under the influence of an 
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anti-proliferative agent like Mitomycin-C can determine if the migratory effect seen here 

is due to migration. Dose dependent adhesion assays using different concentrations of 

collagen can strengthen the conclusion that miR148/152 family increases the adhesion of 

the cells to collagen. There was decreased in the expression of SLUG and ZEB1 as shown 

by the qPCR data in all the cell lines. However, analysis of protein levels of all 

transcriptions factors, SNAIL, SLUG, TWIST1 and ZEB1 along with the study of nuclear 

localization of these factors would provide a better understanding of the effect of 

miR148/152 family on the regulation of EMT. 

 PC3 is an E -cadherin null cell line [110, 111] and overexpression of miR148a and 

miR152 seems to increase E-cadherin levels while miR148b expression results in 

decreased E-cadherin levels. E-cadherin expression in DU145 cell lines is an anomaly in 

this study. While qPCR shows decreased mRNA levels, there is no significant change in 

the protein levels. Due to the lack of correlation between mRNA and protein levels, it is 

difficult to come to a conclusion. However, it has been shown that in DU145 cells, P-

cadherin, and not E-cadherin is important for maintaining adherens junctions. Also, the 

depletion of any of the cadherin-associated proteins like p120ctn, ß-catenin or α-catenin, 

is sufficient to disrupt adherens junctions in DU145 cells and increase migration and cancer 

cell invasion [112]. Analysis of the protein levels of the aforementioned proteins can give 

a better understanding of the change in migration rate caused by miR148/152 family. 

2.5 CONCLUSION AND FUTURE STUDIES 

 LTBP1 and LARG are potential new and common targets of all the members of the 

miR148/152 family. RICTOR has been validated as a target of miR152 but it is a possible 
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new target of miR148a and miR148b. PAI1 has not shown consistent downregulation with 

both DU145 and PC3 cell lines overexpressing miR148b. Therefore, PAI1 can be a 

potential new target of miR148a and miR152, if not miR148b. PAI1 plays an important 

role in the regulation of MMP10 mediated collagen remodeling to facilitate migration and 

invasion. Absence or downregulation of PAI1 expression results in decreased migration. 

Further studies to investigate the role of miR148/152 family on invasion through collagen 

mediated by MMP10 would provide conclusive results. RICTOR is a validated target of 

miR152 and can be a potential target of miR148a.  

The expression pattern and validated targets of miR148a and miR152 are very 

similar. MiR148b and miR152 are both located in the genes (COPZ1 and COPZ2) coding 

for the isoforms, of same protein (ϛ subunit) and are probably regulated along with the 

protein coding gene, it is necessary to express one of the two miRNA for the survival. It 

can be speculated that COPZ1 gene evolved to compensate for the down regulation of 

COPZ2 gene. It is possible that the expression level of the members of miR148/152 family 

as a whole has an impact on the target regulation and biological role and could be 

functioning as a rheostat. 

There is decreased single cell migration with the overexpression of miRNAs, while 

there was no effect on collective cell migration as seen by the scratch assay results. Also, 

there is increased adhesion to collagen matrix. Cell lines that express two or more of these 

miRNA can be used to perform knockdown studies which would provide better 

understanding of the role of endogenous miRNA. In-vivo metastasis studies can be 

performed to further characterize the anti-metastatic effects of miR148/152 family and also 

to explore their potential as replacement miRNA for cancer therapy.
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Table 3.1 Primer sequences for qRT-PCR of the indicated genes 

Gene Sense Antisense 

GAPDH CCCCGGTTTCTATAAATTGAGCC ACCAGAGTTAAAAGCAGCCC 

RPL13a AGATGGCGGAGGTGCAG GGCCCAGCAGTACCTGTTTA 

E-Cadherin  GATAATCCTCCGATCTTCAATCCC CAATATGGTGTATACAGCCTCCC 

SNAI1 TCGGAAGCCTAACTACAGCGA AGATGAGCATTGGCAGCGAG 

SNAI2 TGTGACAAGGAATATGTGAGCC TGAGCCCTCAGATTTGACCTG 

TWIST1 GCGTCCCACTAGCAGGC AAGTGCGCCCCACGC 

ZEB1 AAGGGCAAGAAATCCTGGGG TCTGGTCCTCTTCAGGTGCC 

 

Table 3.2 Summary of EMT genes 
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Figures  

a)  

 

b)  

 

Figure 3.1 miR152 does not effect on the collective migration of DU145 cells.  Cells were 

plated in duplicates and allowed to reach ~90 – 100% confluence. After the scratch, the 

plates were incubated at 37°C and pictures were taken using 10 X objective on an IX81 

Olympus microscope at 0 hr and 15 hrs. a) Percentage of wound healing was then assessed 

and data shown with SEM (N=2), b) representative pictures of the wound closing taken at 

two different time points. 
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a)                b) 

          

c)                d)  

     

Figure 3.2 mi152 impedes migration through collagen. a) Overnight migration through 

uncoated trans-wells and trans-wells coated with individual ECM components; collagen, 

fibronectin and laminin. b) Representative pictures of collagen coated trans-wells. c)   

Overnight migration through collagen coated wells (N=2) d) 6 hour migration through 

collagen coated wells. DU145-miR152 and DU145-miR1 cells in 100 µl serum-free media 

were loaded in the upper chamber of the trans-well and 400µl  serum containing media 

serving as a chemoattractant was placed in the bottom chamber. After incubation at 37ºC 

and  the migrated cells  which are attached to the  filter facing the lower chamber were  

stained  with eosin Y and methylene blue, photographed with 10X objective and scored 

using ImageJ™. * indicates significant decrease (P<0.05) of migration in miRNA 

overexpressing cell lines when compared to the control cell line. 
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a)  

  

b)  

 

Figure 3.3  mi148/152 family impedes migration through collagen in DU145 stable cell 

lines and expgenous TGFβ treatment restores migration. Overnight migration through 

trans-wells coated with collagen in a) PC3 cells b) DU145. After incubation at 37ºC and  

the migrated cells  which are attached to the  filter were  stained  crystal violet, and the 

intensity of the dye dissolved in SDS was  read using plate reader. Migration experiment 

in a similar manner was also carried out in the presence of 100 pm TGFβ. * indicates 

significant decrease (P<0.05) of migration in miRNA overexpressing cell lines when 

compared to the control cell line. (N=3)
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Figure 3.4 miR148/152 family increases the adhesion of DU145 cells. Adhered cells are 

stained with crystal violet and the intensity of dye dissolved in SDS is measured using a 

plate reader. Data is shown relative to 15 minute time point with SEM (N=3) * indicates 

significant increase (P<0.05) of adhesion in miRNA overexpressing cell lines when 

compared to the control cell line. 

 

a)         b)  

.  

Figure 3.5 Effect of miR148/152 family on E-cadherin expression. Though qPCR suggests 

decreased E-cadherin expression in DU145 cell line (a), there is no detectable change in 

the protein levels as shown by western blot. a) RPL13A is used for normalization  and data 

is shown relative to control cell line.
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Figure 3.6 miR152 downregulated the expression of SLUG and ZEB1 in PC3 cell lines. 

Expression of Transcription factors in stable cell lines is verified by qRT-PCR. RPL13A 

was used for normalization of qPCR data. * indicates significant downregulation (P<0.05) 

of transcription factors in miRNA overexpressing cell lines when compared to the control 

cell line. 

 

Figure 3.7 Mir148a/152 family downregulated the expression of SLUG in DU145 cell 

lines. Expression Of the transcription factors in stable cell lines is verified by qRT-PCR. 

RPL13A was used for normalization of qPCR data. * indicates significant downregulation 

(P<0.05) of transcription factors in miRNA overexpressing cell lines when compared to 

the control cell line. 
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Figure 3.8  Probable model for the effect of  miR148/152 family on cancer progression. 

miR152 family impedes TGFβ mediated EMT. By downregulating one or more genes 

associated with TGFβ, directly or indirectly, miR148/152 family causes decrease in the 

metastatic/mesenchymal characteristics like migration and invasion and increase in the 

epithelial characteristics like adhesion.
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APPENDIX A 

POSSIBLE ROLE OF TGFΒ 

 

 

Figure A.1. Effect of miR152 on TGFβ signaling. Cells were serum starved overnight and 

treated with 100pm TGFβ for indicated time points. Increase in the phosphorylated 

SMAD2/3 is a direct result of exogenous TGFβ signaling. Phospho-SMAD2/3 and total-

SMAD 2/3 levels from the western blot are were normalized to β -actin levels. Then, the 

resultant levels of p-smad2/3 was normalized to t-SMAD2/3. MiR152 decreases the effect 

of TGFβ induced pSMAD2/3 signaling. 
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